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Supplementary Figure 1 | Dissociation of pristine PEDOT:PSS in wet environment. Dried
pristine PEDOT:PSS microball swells and readily dissociates into fragmented microgels instead

of forming a stable hydrogel. Scale bar, 1 mm.
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Supplementary Figure 2 | FT-IR spectra of various PEDOT:PSS solutions, dry-annealed
and swollen pure PEDOT:PSS hydrogels. The PEDOT:PSS aqueous solutions with varying
DMOS concentrations (0, 5, and 20 vol.%) display characteristic absorption peaks for DMSO
(1,024 cm! for stretching vibration of sulfoxyl group; 950 ¢cm™ for bending and 3,000 and 2,910
cm! for stretching vibration of methyl group), while these peaks for DMSO disappear for dry-
annealed and swollen pure PEDOT:PSS hydrogels.



Supplementary Figure 3 | Long-term stability of pure PEDOT:PSS hydrogel in wet
physiological environment. Pure PEDOT:PSS hydrogel prepared from the PEDOT:PSS

aqueous solution with 13 vol.% DMSO shows extraordinary stability in PBS over 3 months

without any visible degradation or dissociation. Scale bar, 10 mm.
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Supplementary Figure 4 | Swelling ratio vs. DMSO concentration of pure PEDOT:PSS
hydrogels in wet environments. Swelling ratio of pure PEDOT:PSS hydrogels prepared based
on varying DMSO concentrations both in PBS and in deionized water. Values represent mean

and the error bars represent the s.d. of measured values (n = 4).
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Supplementary Figure 5 | WAXS profiles of dry-annealed and swollen pure PEDOT:PSS
hydrogels. The WAXS profiles of dry-annealed pure PEDOT:PSS films based on varying
DMSO concentrations (0, 5, and 20 vol.%). The profiles are shifted vertically for clarity.
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Supplementary Figure 6 | Mechanical characterizations of pure PEDOT:PSS hydrogels in

deionized water. (a) Nominal stress vs. strain curves of pure PEDOT:PSS hydrogels in

deionized water based on varying DMSO concentrations. (b) Young’s moduli and ultimate

tensile strains vs. DMSO concentration for pure PEDOT:PSS hydrogels in deionized water.

Values in b represent mean and the error bars represent the s.d. of measured values (n = 4).



llll!llll'litl'

£

Supplementary Figure 7 | Tensile deformation of pure PEDOT:PSS hydrogel in PBS. Pure
PEDOT:PSS hydrogel exhibits good stretchability and can sustain tensile deformation over 35 %

in wet physiological environment without failure. Scale bar, 2 mm.
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Supplementary Figure 8 | Cyclic tensile deformations of pure PEDOT:PSS hydrogel in
PBS. Pure PEDOT:PSS hydrogels based on 13 vol.% DMSO concentration exhibits moderate

level of plastic deformation during cyclic tensile deformation from 5 % to 30 %.
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Supplementary Figure 9 | Electrical conductivity of pure PEDOT:PSS hydrogels in acidic
PBS. The pH of PBS is adjusted to 1 by adding HCI. Values represent mean and the error bars

represent the s.d. of measured values (n = 4).
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Supplementary Figure 10 | Electrical and electrochemical stability of pure PEDOT:PSS
hydrogels in wet environment. (a) Electrical conductivity of pure PEDOT:PSS hydrogels
exhibit good stability both in PBS and deionized water over 3 months. (b) CSC of pure
PEDOT:PSS hydrogel shows good stability in PBS with less than 9 % change after 20,000
cycles. (¢) CIC of pure PEDOT:PSS hydrogel shows good stability in PBS with less than 10 %
change after 20,000 cycles. Values in a represent mean and the error bars represent the s.d. of

measured values (n = 4).
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Supplementary Figure 11 | Electrical conductivity of pure PEDOT:PSS hydrogels at
different strains in deionized water. (a-d) Electrical conductivity of pure PEDOT:PSS
hydrogels measured at different tensile strains in deionized water based on (a) 5 vol.% , (b) 9
vol.%, (¢) 33 vol.%, and (d) 50 vol.% DMSO. Values in a-d represent mean and the error bars

represent the s.d. of measured values (n = 4).
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Supplementary Figure 12 | Electrical conductivity of pure PEDOT:PSS hydrogels at
different strains in PBS. (a-d) Electrical conductivity of pure PEDOT:PSS hydrogels measured
at different tensile strains in PBS based on (a) 5 vol.% , (b) 9 vol.%, (c) 33 vol.%, and (d) 50

vol.% DMSO. Values in a-d represent mean and the error bars represent the s.d. of measured

values (n = 4).




Supplementary Table 1 | Electrical conductivity, measurement condition, and preparation

method of various pure conducting polymer hydrogels.!-

Conducting polymer Conductivity (Scm™)  Measurement condition  Preparation method Reference
Poly(carboxybetaine - Free radical polymerization of custom
thiophene-co-thiophene-3-acetic-acid) 227300 Jatey synthetized macromonomer precursor (M
' s L - " Gelation in DMSO for 2 days followed by
Poly(3-thiopheneacetic acid) 10¢~10 Water solvent exchange to water for 2 days (2)
Oxidative polymerization of monomer precursor
-3
el eI Wit followed by aging for 30 days @
PEDOT-PSS 102 Water Oxidative polymerization of monomer precursor @
: followed by equilibriation in water at least 1 week

Polyaniline 023 e Oxidative polymerization of monomer precursor )

followed by purification with water at least1 day

Incubation of PEDOT:PSS aqueous solution within
PEDOT:PSS 8.8 Water sulfuric acid for 3 hours followed by addidtional (6)
sulfuric acid treatment for 12 hours

Facile dry-annealing of DMSO-added

PEDOT:PSS aqueous solution hisivork

PEDOT:PSS 20~40 Water & PBS
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